Basic Course Information						
Semester:	Fall 2024	Instructor Name:	Dr. Alejandro Cozzani			
Course Title & #:	Physics 200	Email:	alex.cozzani@imperial.edu			
CRN #:	10820	Webpage (optional):	Refer to Canvas			
Classroom:	2731	Office #:	2776			
Class Dates:	August12-December 07, 2024 Last Day to Add: 08/24/24 Drop Deadline with W: 11/02/24	Office Hours:	Monday: 7:30-8:00 AM Tuesday: 7:30-8:00 AM and 12:00-1:00 PM (online) Wednesday: 7:30-8:00 AM Thursday: 7:30-8:00 AM and 12:00-1:00 PM (online).			
Class Days:	Tuesday & Thursday	Office Phone #:	760-355-5760			
Class Times:	8:00 AM-11:10 AM	Emergency Contact:	Silvia Murray 760-355-6201			
Units:	4.0 (3.0 Lecture/1.0 Lab)	Class Format:	In person			

Course Description

This course is designed to give an understanding of the fundamental principles of physics in Mechanics.

Course Prerequisite(s) and/or Corequisite(s)

MATH 192 with a grade of "C" or better or concurrent enrollment in MATH 192.

Student Learning Outcomes

- 1. Solve one-dimensional and two-dimensional motion problems involving position, velocity, and acceleration. (ILO 1, ILO 2).
- 2. Solve problems (using algebra, calculus, and trigonometry as tools) involving Newton's Laws and their applications including friction. (ILO 1, ILO 2).
- 3. Solve problems involving work, power, and conservation of energy and momentum. (ILO 1, ILO 2).

Course Objectives

- The student will solve problems involving SI units, scientific notation, dimensional analysis, and calculations to the proper number of significant digits.
- 2. The student will solve problems involving vectors, scalars, frames of reference, components of a vector, and unit vectors.
- 3. The student will solve one-dimensional motion problems involving position, velocity, and acceleration.
- 4. The student will solve problems involving two-dimensional motion with vector applications.
- 5. The student will solve problems involving Newton's Laws and their applications including friction.
- 6. The student will solve problems involving circular motion, accelerated frames of reference, and motion in the presence of resistive forces.
- 7. The student will solve problems involving work, energy, and power.
- 8. The student will solve problems involving potential and kinetic energies and conservation of energy.
- 9. The student will solve problems involving impulse, momentum, and center of mass.
- 10. The student will solve problems involving rotation about a fixed axis of a rigid body.
- 11. The student will solve problems involving angular momentum and torque as vector quantities.
- 12. The student will solve problems involving static equilibrium of a rigid body.
- 13. The student will solve problems involving simple harmonic motion, damped, and forced oscillations.

- 14. The student will solve problems involving the law of universal gravitation, Kepler's Laws of planetary motion, and gravitational potential energy.
- 15. The student will solve problems involving the mechanics of solids and fluids.

Textbooks & Other Resources or Links

Textbooks (either one):

- a. Fundamental of Physics, 10th edition, Chapters 1-15, ISBN: 978-1-118-23072-5 (Wiley).
 - i. Halliday/Resnick/Walker.
- b. Physics for Scientists and Engineers, 4th edition, Chapters 1-14, ISBN: 978-13-149508-1 (Pearson).
 - i. Giancoli, Douglas C.
- c. University Physics, Volume I (Openstax.org). Free OER (https://openstax.org/subjects/science).
 - i. William Moebs, Samuel J. Ling, and Jeff Sanny.

Course Requirements and Instructional Methods

- 1. "Success is the only option, so apply yourself diligently, strive for excellence, study hard, and always give your best effort!"
- 2. <u>Out of Class Assignments</u>: The Department of Education policy states that one (1) credit hour is the amount of student work that reasonably approximates not less than one hour of class time <u>and</u> two (2) hours of out-of-class time per week over the span of a semester. WASC has adopted a similar requirement.
- 3. Minimum requirements to access assignments in Canvas:
 - a. Access to a computer,
 - b. Internet access (consider accessing the internet at alternative locations like IVC or the public library if you don't have it at home),
 - c. Browser: opt for Google Chrome or Firefox as your browser choice, as Safari may not display certain content correctly.
- 4. **Special Project**: Please refer to Canvas under "Modules," right below "Course Syllabus," where you will find "Special Project" for specific details and the rubric. Also, read the announcement in Canvas about this project.
- 5. Lab Experiments and Reports Guidelines:
 - Lab experiments will be conducted during class. Following each experiment, full lab reports must be submitted. Include:
 - o Objective,
 - o Summary,
 - Materials,
 - o Procedure,
 - Data table,
 - o Graphs,
 - o Response to questions,
 - Conclusion.
 - Ensure that your lab reports are typed, utilizing double-spacing, and adhering to a font like Times New Roman, size 12 or similar
 - Graphs should be created using Excel or another graphing program. Please refrain from submitting hand-drawn graphs.

- Submit a hard copy of your report(s) within a week from the date of the experiment. Strictly adhere to this timeline; late submissions will not be accepted under any circumstances.
- Please ensure you arrive on time for laboratory experiments, as we cannot delay the start until all students are present. If you are late, you may not be allowed to participate in the experiment.
- Kindly note that there will be no make-up opportunities for missed experiments due to room constraints and staffing limitations. Your understanding is appreciated If you are absent on the day of the experiment, please do not include your name in the lab report.
- You can write a group report, but all students must contribute, and you will all receive the same grade. Alternatively, you can choose to submit an individual lab report.
- 6. **Lecture**: You need to read the modules because assignments are aligned with these readings. You can use any textbook or watch any videos of your choice as alternatives.
- 7. **Online Discussions**: As part of the course requirements, you need to answer the online discussions found in Canvas, under the "Discussions" tab.
- 8. **Online Quizzes**: At the end of each chapter, you will take a quiz to check your knowledge. Please refer to specific instructions under the "Quizzes" tab in Canvas.
- 9. Computer Simulations: To enhance your knowledge, you will have to run computer simulations (done via Canvas).
- 10. **Tests or Exams:** They may be T/F, multiple choice, open-ended, and free response guestions (done in class).
- 11. **Mid-term:** It may include questions from the first exam (recycled questions) and new questions (you have not seen them before but with similar level of difficulty). No makeup! (done in class).
- 12. **Final Exam:** It may include questions from the tests (recycled questions) and new questions (you have not seen them before but with similar level of difficulty). The MC section will include ALL chapters. No makeup! (done in class).
- 13. Students who are absent bear responsibility for both in-class activities and Canvas assignments.
- 14. Students may only request exam or assignment makeup if they provide valid documentation, such as hospitalization records, and promptly inform the instructor via email to coordinate arrangements.

Course Grading Based on Course Objectives

The student's grade will depend on the following areas (not on total points):

	Laboratory Experiments	
	Special Project	15%
	Discussions / Quizzes / Simulations	20%
\triangleright	Exams (2)	20%
	Mid-term / Final Exam	25%
	TOTAL	100%

All grades are calculated by using the standard scale of:

A = 100-90%

B = 89.99-80%

C = 79.99-70% D = 69.99-60% F = 59.99 % and below.

- Grades are displayed in Canvas, and you must earn at least a "C" to pass the class.
- Final grades are not rounded under any circumstances, so please refrain from asking for adjustments if your grade is close to the next higher grade.

Academic Honesty (Artificial Intelligence -AI)

IVC values critical thinking and communication skills and considers academic integrity essential to learning. Using AI tools as a replacement for your own thinking, writing, or quantitative reasoning goes against both our mission and academic honesty policy and will be considered academic dishonesty, or plagiarism unless you have been instructed to do so by your instructor. In case of any uncertainty regarding the ethical use of AI tools, students are encouraged to reach out to their instructors for clarification.

Course Policies

ATTENDANCE

- A student who fails to attend the first meeting of a class or does not complete the first mandatory activity of an online class will be dropped by the instructor as of the first official meeting of that class. Should readmission be desired, the student's status will be the same as that of any other student who desires to add a class. It is the student's responsibility to drop or officially withdraw from the class. See General Catalog for details.
- Regular attendance in all classes is expected of all students. A student whose continuous, unexcused absence exceed the number of hours the class is scheduled to meet per week may be dropped. For online courses, students who fail to complete required activities for two consecutive weeks may be considered to have excessive absences and may be dropped.
- Absences attributed to the representation of the college at officially approved events (conferences, contests, and field trips) will be counted as 'excused' absences.

CLASSROOM ETIQUETTE

- Electronic Devices: Cell phones and electronic devices must be turned off and put away during class, unless otherwise directed by the instructor.
- Food and Drink are prohibited in all classrooms. Water bottles with lids/caps are the only exception. Additional restrictions will apply in labs. Please comply as directed by the instructor.
- Disruptive Students: Students who disrupt or interfere with a class may be sent out of the room and told to meet with the Campus Disciplinary Officer before returning to continue with coursework. Disciplinary procedures will be followed as outlined in the **General Catalog**.
- Children in the classroom: Due to college rules and state laws, no one who is not enrolled in the class may attend, including children.

ONLINE NETIQUETTE

- What is netiquette? Netiquette is internet manners, online etiquette, and digital etiquette all rolled into one word. Basically, netiquette is a set of rules for behaving properly online.
- Students are to comply with the following rules of netiquette: (1) identify yourself, (2) include a subject line, (3) avoid sarcasm, (4) respect others' opinions and privacy, (5) acknowledge and return messages promptly, (6) copy with caution, (7) do not spam or junk mail, (8) be concise, (9) use appropriate language, (10) use appropriate emoticons (emotional icons) to help convey meaning, and (11) use appropriate intensifiers to help convey meaning [do not use ALL CAPS or multiple exclamation marks (!!!!!)].

ACADEMIC HONESTY

Academic honesty in the advancement of knowledge requires that all students and instructors respect the integrity of one another's work and recognize the important of acknowledging and safeguarding intellectual property.

There are many different forms of academic dishonesty. The following kinds of honesty violations and their definitions are not meant to be exhaustive. Rather, they are intended to serve as examples of unacceptable academic conduct.

PLAGIARISM

- Plagiarism is taking and presenting as one's own the writings or ideas of others, without citing the source. You should understand the concept of plagiarism and keep it in mind when taking exams and preparing written materials. If you do not understand how to "cite a source" correctly, you must ask for help.
- Cheating is defined as fraud, deceit, or dishonesty in an academic assignment, or using or attempting to use materials, or assisting others in using materials that are prohibited or inappropriate in the context of the academic assignment in question.

Anyone caught cheating or plagiarizing will receive a zero (0) on the exam or assignment, and the instructor may report the incident to the Campus Disciplinary Officer, who may place related documentation in a file. Repeated acts of cheating may result in an F in the course and/or disciplinary action. Please refer to the <u>General Catalog</u> for more information on academic dishonesty or other misconduct. Acts of cheating include, but are not limited to, the following: (a) plagiarism; (b) copying or attempting to copy from others during an examination or on an assignment; (c) communicating test information with another person during an examination; (d) allowing others to do an assignment or portion of an assignment; (e) using a commercial term paper service.

Other Course Information

Imperial Valley College offers various services in support of student success. The following are some of the services available for students. Please speak to your instructor about additional services which may be available.

- CANVAS LMS. Canvas is Imperial Valley College's main Learning Management System. To log onto Canvas, use this link: <u>Canvas Student Login</u>. The <u>Canvas Student Guides Site</u> provides a variety of support available to students 24 hours per day. Additionally, a 24/7 Canvas Support Hotline is available for students to use: 877-893-9853.
- <u>Learning Services</u>. There are several learning labs on campus to assist students through the use of computers and tutors. Please consult your Campus Map for the Math Lab; Reading, Writing & Language Labs; and the Study Skills Center.
- <u>Library Services</u>. There is more to our library than just books. You have access to tutors in the <u>Study Skills Center</u>, study rooms for small groups, and online access to a wealth of resources.
- CANVAS LMS. Canvas is Imperial Valley College's Learning Management System. To log onto Canvas, use this link: <u>Canvas Student Login</u>. The <u>Canvas Student Guides Site</u> provides a variety of support available to students 24 hours per day. Additionally, a 24/7 Canvas Support Hotline is available for students to use: 877-893-9853.
- Any student with a documented disability who may need educational accommodations should notify the instructor or the
 <u>Disabled Student Programs and Services</u> (DSP&S) office as soon as possible. The DSP&S office is located in Building 2100,
 telephone 760-355-6313. Please contact them if you feel you need to be evaluated for educational accommodations.

IVC Student Resources

IVC wants you to be successful in all aspects of your education. For help, resources, services, and an explanation of policies, visit http://www.imperial.edu/studentresources or click the heart icon in Canvas.

Anticipated Class Schedule/Calendar

Subject to change without prior notice

WEEK OF	ACTIVITY, ASSIGNMENT, TOPIC	READING	ASSIGMENT DUE
1-August 12	Syllabus / Assignments/Canvas Module 0: Meet and Greet MODULE 1: Measurement	Read Content Module 0 Read Content Module 1	Refer to Canvas for due dates
2- August 19	MODULE 2: Vectors	Read Content Module 2	Refer to Canvas for due dates

3 – August 26	MODULE 3: Motion in One Dimension	Read Content Module 3	Refer to Canvas for due dates
4- September 02 Monday 09/02 Holiday	MODULE 4: Motion in Two Dimensions	Read Content Module 4	Refer to Canvas for due dates
5- September 09	Exam # 1 (Modules 2-3-4) MODULE 5: Newton's Laws of Motion	Read Content Module 5	Done in Class Refer to Canvas for due dates
6- September 16	MODULE 6: Applications of Newton's Laws of Motion	Read Content Module 6	Refer to Canvas for due dates
7- September 23	MODULE 7: Kinetic Energy and Work	Read Content Module 7	Refer to Canvas for due dates
8 - September 30	Mid-term (Modules 2-7)		Done in Class
9- October 07	MODULE 8: Potential Energy and Conservation of Energy	Read Content Module 8	Refer to Canvas for due dates
10- October 14	MODULE 9: Center of Mass and Linear Momentum	Read Content Module 9	Refer to Canvas for due dates
11- October 21	MODULE 10: Rotation	Read Content Module 10	Refer to Canvas for due dates
12- October 28	MODULE 11: Rolling, Torque, and Angular Momentum	Read Content Module 11	Refer to Canvas for due dates
13- November 04	MODULE 12: Fluids	Read Content Module 12	Refer to Canvas for due dates
14- November 11	Exam # 2 (Modules 8-9-10-11) MODULE 13: Gravitation	Read Content Module 13	Done in Class Refer to Canvas for due dates
15- November 18	MODULE 14: Oscillations Special Project: Final Presentations	Read Content Module 14	Refer to Canvas for due dates Done in Class
November 25	Thanksgiving Break	NO CLASS	
16-December 02	Final Exam (All Modules)		Done in Class