

Basic Course Information						
Semester:	Fall 2022	Instructor Name:	Octavio Ortiz			
Course Title & #:	CS 221	Email:	octavio.ortiz@imperial.edu			
CRN #:	10521	Webpage (optional):	Canvas Course			
Classroom:	2724	Office #:	2767.1			
Class Dates:	8/15 – 12/10	Office Hours:	Faculty Schedule			
Class Days:	M/W	Office Phone #:	760-355-5706			
Class Times:	7:30 – 10:00 AM	Emergency Contact:	Silvia Murray			
Units:	3	Class Format:	In-Person			

Course Description

Introduction to programming and software engineering for computer science majors and computer professionals. A systematic approach to the design, implementation, and management of robust Java computer programs. Course emphasizes Object Oriented programming design, programming documentation, testing and debugging techniques. (C-ID COMP 122) (CSU/UC)

Course Prerequisite(s) and/or Corequisite(s)

None

Student Learning Outcomes

Upon course completion, the successful student will have acquired new skills, knowledge, and or attitudes as demonstrated by being able to:

- 1. Correctly use classes from the standard Java libraries to solve a problem
- 2. Correctly use graphical user interface (GUI) components to create a program
- 3. Correctly use inheritance relations to solve a problem

Course Objectives

Upon satisfactory completion of the course, students will be able to:

- 1. Analyze unstructured problems and design computer solutions
- 2. Use procedural techniques to control program flow (sequence, selection, and repetition) and declare local variables and pass parameters to functions.
- 3. Demonstrate object-oriented programming language syntax and structure
- 4. Define and use classes and methods to implement algorithms
- 5. Assess the applicability of common algorithms to specific program design problems
- 6. Develop and use beginning program testing data and techniques
- 7. Assess the applicability of common data structures to specific program design problems
- 8. Use system debuggers
- 9. Adhere to style and documentation standards in writing programs

Textbooks & Other Resources or Links

Introduction to JAVA – Programming and Data Structures

Author: Y. Daniel Liang Edition: 12th ISBN: 978-0-13-652023-8 Copyright Year: 2020 Publisher: Pearson Prentice Hall

Course Requirements and Instructional Methods

Students will be exposed to various instructional methods. Lectures, both in person and through pre-recorded tutorial videos, will introduce students to fundamental programming concepts. Students will then apply what they learn in lectures to their own programming assignments and applications.

Programming assignments will be relatively short and will assess a student's mastery of a particular programming skill, as well as a student's ability to problem solve. Programming applications, or projects, will be more intricate. To develop an application, students will rely on the various programming and problem-solving skills they have developed up to that point.

There will be short quizzes where students will read code and answer multiple choice, true-false, and free-response questions pertaining to the code segments. A comprehensive semester final exam will assess students' ability to read, debug and rationalize code segments that range in complexity.

Course Grading Based on Course Objectives

ASSIGNMENT	POINTS
Collaborative Notes	10%
Approximately 1-3 per week	
Programming Assignments	15%
Approximately 5-10 PA's in semester	
Quizzes	45%
3 Planned Quizzes	
Projects/Final Exam	30%
Midterm/Final project & comprehensive final	
Total	100%

Score	Letter Grade	
≥ 90%	А	
≥ 80%	В	
≥ 70%	с	
≥ 60%	D	
< 60%	F	

Course Policies

Attendance:

Attendance is mandatory. Students are expected to attend every class meeting. Lectures will preview programming assignments, programming applications and future assessments.

- Although attendance is not explicitly factored into your grade, failing to complete programming assignments and assessments due to absences will negatively impact your grade.
- Students with excessive absences will be dropped from the course as outlined in AP 5075.

Late Submissions:

Programming assignments are to be completed and submitted by the due date stated on Canvas. Late programming assignments will be accepted and penalized as follows:

- 90% maximum score if submitted within 24 hours past due date
- 80% maximum score if submitted within 48 hours past due date
- 70% maximum score if submitted within 72 hours past due date
- 50% maximum score if more than three days and less than a week past due date
- No credit will be given to assignments that submitted past the hard deadline (see calendar)

Programming applications/projects, quizzes and the final exam will NOT be accepted late.

Make-up Assignments:

There are no make-up assignments.

Programming applications/projects and quizzes cannot be made up, however, if the material is
presented again in future applications or quizzes, then the failed assessment will be reevaluated.

Drop Policy

The instructor reserves the right to drop students who fail to attend the first-class session or fail to complete the first assignment by the assigned due date.

Other Course Information

Resources:

https://www.w3schools.com – Learn Programming

https://docs.oracle.com/en/java/index.html - Java Documentation

IVC Student Resources

IVC wants you to be successful in all aspects of your education. For help, resources, services, and an explanation of policies, visit <u>http://www.imperial.edu/studentresources</u> or click the heart icon in Canvas.

Anticipated Class Schedule/Calendar

The semester calendar is meant to provide an overview of the topics that will be covered throughout the semester. Every effort will be made to adhere to the calendar; however, changes might be necessary.

Week	Date	Торіс	Assignment
Week 1	8/15	Syllabus & Course Policies Modules, collaborative notes, programming assignments, etc	
	8/17	 Fundamentals Basic file structure in Java Printing 	
Week 2	8/22	Elementary Programming Data Types, String Objects	
	8/24	Elementary Programming String Objects, User Input	
Week 3	8/29	 Selection if-statements, AND/OR, NOT, MOD operators 	
	8/31	• Selection o if-else, if-else if statements	
Week 4	9/5	Labor Day (no class)	
	9/7	 Strings & Mathematical Functions Common math functions Strings & Mathematical Functions String type and its methods 	
Week 5	9/12	 Quiz 1 (Chapters 1-4) Deadline to submit late assignments (Ch.1-4) for 50% credit. Repetition while loops, do-while loops, for loops 	
	9/14	Repetition Implementing Loops	
Week 6	9/19	 Repetition & Arrays 1-D arrays, for loops & arrays 	
	9/21	Repetition & Arrays o for-each loops & arrays	
Week 7	9/26	Encapsulation Functions & Methods, Parameters, Return type	
	9/28	Encapsulation Implementing Methods	
Week 8	10/3 10/5	Midterm Project	
Week 9	10/10	 Quiz 2 (Chapters 5-7) Deadline to submit late assignments (Ch.5-7) for 50% credit. 	

Week	Date	Торіс	Assignment
		Multidimensional Arrays	
		 2D array, nested for loops & 2-D arrays 	
	10/12	Multidimensional Arrays	
		 Implementing 2D arrays 	
Week 10	10/17	ArrayLists	
		<pre>o add(), remove(), get(), isEmpty()</pre>	
	10/19	ArrayLists	
		 Implementing arraylists 	
Week 11	10/24	Encapsulation & Class Design	
		 Fields, constructors, the this reference 	
	10/26	Encapsulation & Class Design	
		 Accessor & Mutator Methods, toString() method 	
Week 12	10/31	Class Design	
		 Class Instantiation, zero & multiple argument 	
		Constructor, overloading methods	
	11/2	Class Design	
		 Static vs. non-static methods & fields 	
Week 13	11/7	Class Design	
		O Passing Object to Methods	
	11/9	Class Design	
		• Array of Objects	
		 Writing your own classes Quiz 3 (Chapters 8-10) 	
		 Deadline to submit late assignments (Ch.8-10) for 50% credit. 	
Week 14	11/14	Inheritance	
		 extends keyword, superclasses & subclasses, 	
		super keyword, overriding and overloading	
		methods	
	11/16	Inheritance	
		 Advantages of inheritance 	
		THANKSGIVING BREAK	
Week 15	11/28	Inheritance	
		 Inheritance and JavaFX 	
	11/30	• GUI	
		• JavaFX vs. Swing and AWT, JavaFX basic structure,	
		Color class, Font class, Panes & Groups	
		Final Project	
Week 16	12/5	• GUI	
		 Implementing GUI's with JavaFX 	
	10/7	Final Project	
	12/7	Final Project Due	
		Comprehensive Final Exam ***Subject to change without prior potice***	

Subject to change without prior notice