

Basic Course Information			
Semester:	Sprint 2022	Instructor Name:	Octavio Ortiz
Course Title & #:	ENGR 212	Email:	octavio.ortiz@imperial.edu
CRN #:	20607	Webpage (optional):	Canvas
Classroom:	2733	Office #:	2767.1
			M: 9:45 – 10:15 AM T: 5:30 – 6 PM T/TH: 9 – 10 AM
Class Dates:	2/14/22 – 6/10/22	Office Hours:	TH: 4:40 – 5:10 PM (IHS)
Class Days:	Tuesday/Thursday	Office Phone #:	760-355-5706
Class Times:	6:00 – 7:25 PM	Emergency Contact:	Silvia Murray: 760-355-6201
Units:	3	Class Format:	Face-to-Face

Course Description

Kinetics of a particle; central force motion; systems of particles; work and energy; impulse and momentum; moments and products of inertia; Euler's equations of motion; vibration and time response; engineering applications. (CSU, UC)

Course Prerequisite(s) and/or Corequisite(s)

ENGR 210 with a grade of "C" or better, and credit or concurrent enrollment in MATH 194.

Student Learning Outcomes

Upon course completion, the successful student will have acquired new skills, knowledge, and or attitudes as demonstrated by being able to:

- 1. Solve problems involving kinetics of particles.
- 2. Solve problems involving kinematics of rigid bodies.
- 3. Solve problems involving plane motion of rigid bodies.
- 4. Demonstrate problem solving strategies by identifying an appropriate method to solve a given problem, correctly set up the problem, perform the appropriate analysis and computation, and share their interpretation of the conclusion or the outcome, using correct grammar or in an oral presentation.

Course Objectives

Upon satisfactory completion of the course, students will be able to:

- 1. Derive and apply the relationships between position, velocity, and acceleration of a particle in rectilinear and curvilinear motion.
- 2. Derive relations defining the velocity and acceleration of any particle on a rigid body for translation, rotation and general plane motion.
- 3. Apply the method of work and energy to engineering problems modeled as a single particle, a system of particles, or a rigid body in plane motion.
- 4. Apply the method of impulse and momentum to engineering problems modeled as a single particle, as system of particles, or a rigid body in plane motion.
- 5. Select the method of analysis that is best suited for the solution to a given problem. (Newton's Law, Work and Energy, Impulse and Momentum, or a combination of these methods).
- 6. Describe and analyze the plane motion of a particle relative to a rotating frame. Determine the Coriolis acceleration in plane motion.
- 7. Apply the principle of impulse and momentum to problems of direct and oblique central impact, as well as eccentric impact.
- 8. To effective communicate legible engineering solutions to be understood by engineers both in and out of their specific disciplines.

Textbooks & Other Resources or Links

Engineering Mechanics: Dynamics (w/out Mastering Access) Author: Hibbeler

Edition: 14th ISBN: 978-0133915389 Copyright Year: 2016 Publisher: Pearson Prentice Hall

Course Requirements and Instructional Methods

Students will be exposed to various instructional methods. In person lectures will introduce students to fundamental engineering concepts in Statics. Students will then apply what they learn in lectures to problems selected from the textbook. Guidance and modeling will be provided during the face-to-face component of the course.

Homework assignments will consist of an adequate number of applied problems selected from the textbook. Solving the homework problems will help students develop the problem solving and critical thinking skills that they will need for the chapter tests and the final exam.

The chapter tests will be focused on the content covered in a particular chapter(s). Questions will consists of multiple choice, true/false and short answer to assess conceptual and theoretical understanding. In addition, a few problems will be similar the ones on the lecture notes and the homework assignments. The final exam will be comprehensive, with more emphasis placed on chapters 4-11.

Course Grading Based on Course Objectives

ASSIGNMENT	POINTS
Homework Assignments	10%
Approximately 10-12 homework assignments	
Tests	60%
Four chapter tests (15% each)	
Final Exam	30%
Comprehensive final exam 12/8/22	
Total	100%

Score	Letter Grade
≥ 90%	А
≥ 80%	В
≥ 70%	с
≥ 60%	D
< 60%	F

Course Policies

Attendance:

Students are expected to attend every class meeting. Lectures will preview programming assignments, programming applications and future assessments.

 Although attendance is not explicitly factored into your grade, failing to complete programming assignments and assessments due to absences will negatively impact your grade.

Late Submissions:

Programming assignments are to be completed and submitted by the due date stated on Canvas. Late programming assignments will be accepted and penalized as follows:

- 90% maximum score if submitted within 24 hours past due date
- 80% maximum score if submitted within 48 hours past due date
- 70% maximum score if submitted within 72 hours past due date
- 50% maximum score if more than three days and less than a week past due date
- No credit will be given to assignments that are one week or more past due

Programming applications/projects, quizzes and the final exam will NOT be accepted late.

Make-up Assignments:

There are no make-up assignments.

- Programming assignments that are more than a week past due will receive a score of 0 and cannot be made up.
- Programming applications/projects and quizzes cannot be made up, however, if the material is
 presented again in future applications or quizzes, then the failed assessment will be reevaluated.

Drop Policy

The instructor reserves the right to drop students who fail to attend the first-class session or fail to complete the first assignment by the assigned due date.

Other Course Information

Resources:

https://www.w3schools.com – Learn Programming

https://docs.oracle.com/en/java/index.html - Java Documentation

IVC Student Resources

IVC wants you to be successful in all aspects of your education. For help, resources, services, and an explanation of policies, visit <u>http://www.imperial.edu/studentresources</u> or click the heart icon in Canvas.

Course Calendar

The semester calendar is meant to provide an overview of the topics that will be covered throughout the semester. Every effort will be made to adhere to the calendar; however, changes might be necessary.

Date or Week	Activity, Assignment, and/or Topic	Pages/ Due Dates/Tests
Week 1 February 14 – 18	Syllabus & Introduction	TBD
j j	<u>Chapter 12 – Kinematics of a Particle</u>	
	Rectilinear kinematics: Continuous & Erratic	
	Motion	
	Motion of a Projectile	
	 Curvilinear Motion: Normal and Tangential Components 	
	 Absolute Dependent Motion Analysis of Two Particles 	
Week 2		TBD
February 21 – 25	Chapter 13 – Kinetics of a Particle: Force &	
	Acceleration	
	 Newton's Second Law of Motion 	
	• $\sum F = ma$	
	 Equation of Motion for a System of Particles 	
	 Rectangular Coordinates 	
	 Equations of Motion: Normal and Tangential 	
	Coordinates	
Week 3	Quiz 1: Chapter 12 & 13	TBD
February 28 –		
March 4	<u>Chapter 14 – Kinetics of a Particle: Work and</u>	
	<u>Energy</u>	
	• The Work of a Force	
	 Principle of Work and Energy 	
	 Principle of Work and Energy for a System of Particles 	
	 Power and Efficiency 	
	Conservative Forces and Potential Energy	
	Conservation of Energy	
Week 4		TBD
March 7 – 11	Review Chapters 12-14	
Week 5	Quiz 2: Chapter 14	TBD
March 14 – 18		
	<u>Chapter 15 – Kinetics of a Particle: Impulse and</u>	
	<u>Momentum</u>	
	 Principle of Linear Impulse and Momentum 	

Date or Week	Activity, Assignment, and/or Topic	Pages/ Due Dates/Tests
	 Principle of Linear Impulse and Momentum for a System of Particles Conservation of Linear Momentum for a System of Particles Impact 	
	1	
Week 6 March 21 – 25	 <u>Chapter 15 – Kinetics of a Particle: Impulse and</u> <u>Momentum</u> Angular Momentum Relation Between Moment of a Force and Angular Momentum Principle of Angular Impulse and Momentum Steady Flow of a Fluid Stream 	TBD
Week 7		TBD
March 28 – April 1	Review chapters 12-15	
Week 8 April 4 – 8	Quiz 3: Chapter 15	TBD
	 <u>Chapter 16: Planar Kinematics of a Rigid Body</u> Planar Rigid-Body Motion Translation Rotation about a Fixed Axis Absolute Motion Analysis 	
Week 9 April 11 – 15	 <u>Chapter 16: Planar Kinematics of a Rigid Body</u> Relative-Motion Analysis: Velocity Instantaneous Center of Zero Velocity Relative-Motion Analysis: Acceleration Relative-Motion Analysis using Rotating Axes 	TBD
	Spring Break	
Week 10 April 25 – April 29	Review Chapters 12-16	TBD
Week 11 May 2 – May 6	Quiz 4: Chapter 16Chapter 17 – Planar Kinematics of a Rigid Body: Force and Acceleration • Mass Moment of Inertia • Planar Kinetic Equations of Motion	TBD
	 Equations of Motion: Translation Equations of Motion: Rotation about a Fixed Axis 	

Date or Week	Activity, Assignment, and/or Topic	Pages/ Due Dates/Tests
	Equations of Motion: General Plane Motion	
Week 12 May 9 – 13	Chapter 18 – Planar Kinetics of a Rigid Body: Work	TBD
Thuy y 10	and Energy	
	• Kinetic Energy	
	• The Work of a Force	
	• The Work of a Couple Moment	
	 Principle of Work and Energy 	
	 Conservation of Energy 	
Week 13	Quiz 5: Chapter 17 & 18	TBD
May 16 – 20		
	<u>Chapter 19 – Planar Kinetics of a Rigid Body:</u>	
	Impulse and Momentum	
	 Linear and Angular Momentum 	
	 Principle of Impulse and Momentum 	
	Conservation of Momentum	
Week 14		TBD
May 23 – 27	<u>Chapter 22 – Vibrations</u>	
	 Undamped Free Vibrations 	
	Energy Methods	
	Undamped Forced Vibrations	
Week 15		TBD
May 31 – June 3	Review Chapters 19 & 22	
Week 16	Final: Chapters 12- 22	
June 6 – 10		

*****Subject to change without prior notice**