

Basic Course Information

Semester:	Winter 2026	Instructor Name:	Dr. Michael Kanyi
Course No. & Title	AG 140: Principles of Plant Science	Email:	michael.kanyi@imperial.edu
CRN #:	15124 & 15349	Webpage (optional):	
Classroom:		Office	406
Class Dates:	1/5/2026 –2/4/2026	Office hours: Virtual (IVC email, Canvas text, Canvas email, pronto, office phone)	MTWR 1:00 p.m. - 2:00 p.m. virtually.
Class Days:	Online	Office Phone #:	(760)355-5717
Class Times:	Online	Emergency Contact:	Tisha Nelson (760) 355-6361/ (760) 355-6373
Units:	4	Course Format	Online Asynchronous

Course Description

An introduction to plant science that examines agriculture, forest, landscape, and other significant uses of plants. Included are structure, growth processes, propagation, physiology, genetic improvement and biotechnology, ecology, soil environment, biological competitors, and symbionts of plants. The production, harvest, and utilization of the principal crops grown in California and the Imperial Valley will be included. Laboratory work is required. (*For Labster Simulations, you will require a computer and internet, not iPad or smart phone*). (C-ID AG-PS 106 L) CSU/UC).

Course Prerequisite(s) and/or Corequisite(s)

Although there is no prerequisite requirement for this course, adequate knowledge of general high school biology is expected.

Student Learning Outcomes

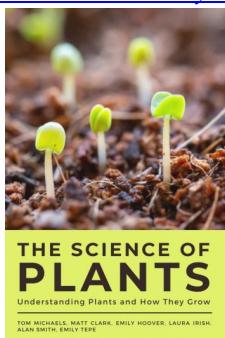
Upon course completion, the successful student will have acquired new skills, knowledge, and or attitudes as demonstrated by being able to:

1. Identify and discuss the basic needs of plant crops found in Imperial County, California & major crop-producing states in the US (ILO1, ILO2, ILO4).
2. Accurately discuss and explain a crop rotation program as well as the benefits that are derived from that production system (ILO1, ILO2, ILO4).
3. Identify and discuss major crop commodities grown in Imperial County as well as the season that those crops are planted and harvested (ILO1, ILO2, ILO4).
4. Identify and discuss basic pest avoidance procedures for commonly grown crops in Imperial County (ILO1, ILO2, ILO4).

Course Objectives

Upon satisfactory completion of the course, students will be able to:

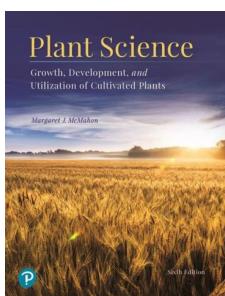
1. Understand human relationships with plants. Recognize the economic importance of agriculture and forestry; the development of cultivated species; agroecology, and the role of the production of crop plants in feeding the world's population.
2. Understand the fundamentals of botany and plant physiology of plant classification, structure, growth, economic botany, and post-harvest physiology.
3. Understand the environmental and economic factors involved in plant production systems. Relate to plant production the environmental parameters of light, temperature, soil, water, pests, and disease, as well as such economic factors as markets and transportation, and ecological factors such as local-scale biodiversity and invasions by exotics.
4. Understand plant improvement, including plant breeding, seed production, and basic processes in plant biotechnology.
5. Understand the issues involved in plant transgenics including food safety and genetic integrity of ecological systems and non-transgenic crops.
6. Describe the important plant and crop systems such as large-scale industrialized crop production, timber production,


organic farming, hothouse production, tropical agriculture and forestry, gardening and landscaping, and plants as art and for decoration.

7. Understand the basic principles of soil management as they relate to soil properties, plant nutrition, fertilization, crop rotation, multiple and relay cropping, tillage, and soil degradation.
8. Understand the basic principles of the management of weeds, arthropods, and pathogens.
9. Understand the basic principles of irrigation as they pertain to crops including types of irrigation, crop water use, and drainage.
10. Recognize areas of harvest and post-harvest handling as they pertain to the different types of crops, and value-added strategies for plants.
11. Describe the scientific method and explain its application in solving problems in plant and soil science.

Textbooks & Other Resources or Links

This course will primarily use OERs. The resources will be available here on Canvas and will be organized in weekly modules. The main [OER reference textbook](#) information is provided below.


- Michaels, T., Clark, M., Hoover, E., Irish, L., Smith, A., and Tepe, E. (2022). [The Science of Plants: Understanding Plants and How They Grow](#). University of Minnesota Press. ISBN 13: 9781946135872

- Clark, M. A., Choi, J., & Douglas, M. [Biology 2e. Openstax](#)

Optional Recommended Textbook

- McMahon, Margaret J., Rubatzky, Vincent E. (2020). *Hartman's Plant Science: Growth, Development, and Utilization of Cultivated Plants* (6th ed.): Pearson/Prentice Hall

Note: This course will use various open/online educational resources (OERs).

Course Requirements and Instructional Methods

- Notes posted in Canvas, instructional YouTube videos, simulated laboratory activities, outside/field practical experience, assignments, quizzes, and tests. Effective participation in all course activities (discussion in Canvas) is highly encouraged and will impact the final grade. Critical thinking approaches to solving agricultural economic issues at the regional, state, national, and global levels will be emphasized.
- Out of Class Assignments (mainly f2f): The Department of Education policy states that one (1) credit hour is the amount of student work that reasonably approximates not less than one hour of class time and two (2) hours of out-of-class time per week for a semester. WASC has adopted a similar requirement.
- You will conduct virtual lab simulations that will require a computer (not a mobile phone) and reliable internet.

Course Grading Based on Course Objectives

Students are advised to acquaint themselves with all rules and regulations of Standards of Student Conduct outlined in [the Imperial Valley College General Catalog](#). For writing assignments, it is expected that each student will demonstrate proficiency in the use of the English Language. Grammatical errors and writing that do not express ideas clearly will affect your grade.

Tests

There will be weekly **module quizzes** and a **final comprehensive test covering all the modules**. Test questions may include true/false, multiple choice, matching, and short answer questions. All students are advised to strictly adhere to the dates and times for the tests which will be communicated. Late submission of assignments must be communicated to the professor before the due date to avoid loss of points.

Late Submission Policy

Timely submission of all assignments, quizzes, discussion posts, tests, and other tasks by the due date is required. Therefore, “no late work and submissions policy” will be followed.

Minimally, legitimate circumstances that potentially threaten this policy must be communicated and excusal granted in advance of the submission's due date. There will be a 10% deduction of possible points for a late submission with excusal. If a submission is not made by the due date, and there was no prior excusal, then a zero (0) score will result.

There will be no make-up tests.

The distribution of grading points towards the final grade will be as follows.

• Discussion	15%
• Lab /assignments	25%
• Quizzes	25%
• Final test (All modules)	35%
Total	100%

Grading Legend

A = 100-90%

B = 89-80%

C = 79-70%

D = 69-60%

F = <59%

Academic Honesty (Artificial Intelligence -AI)

IVC values critical thinking and communication skills and considers academic integrity essential to learning. Using AI tools as a replacement for your own thinking, writing, or quantitative reasoning goes against both our mission and academic honesty policy and will be considered academic dishonesty, or plagiarism unless you have been instructed to do so by your instructor. In case of any uncertainty regarding the ethical use of AI tools, students are encouraged to reach out to their instructors for clarification.

Accessibility Statement

Imperial Valley College is committed to providing an accessible learning experience for all students, regardless of course modality. Every effort has been made to ensure that this course complies with all state and federal accessibility regulations, including Section 508 of the Rehabilitation Act, the Americans with Disabilities Act (ADA), and Title 5 of the California Code of Regulations. However, if you encounter any content that is not accessible, please contact your instructor or the area dean for assistance. If you have specific accommodations through **DSPS**, contact them for additional assistance. We are here to support you and ensure that you have equal access to all course materials.

Course Policies

Attendance

- A student who fails to attend the first meeting of this class will be dropped by the instructor as of the first

official meeting. Should readmission be desired, the student's status will be the same as that of any other student who desires to add a class. It is the student's responsibility to drop or officially withdraw from the class. More information is found in the [General Catalog](#).

- Regular attendance in all classes is expected of all students. A student whose continuous, unexcused absence exceeds the hours the class is scheduled to meet per week may be dropped. **For online courses, students who fail to complete required activities for two consecutive weeks may be considered to have excessive absences and may be dropped.**
- Absences attributed to the representation of the college at officially approved events (conferences, contests, and field trips) will be counted as 'excused' absences.

What does it mean to "attend" an online class?

Attendance is critical to student success and for IVC to use federal aid funds. Indications of attendance are:

- Student submission of an academic assignment
- Student submission of an exam
- Student participation in an instructor-led Zoom conference
- Documented student interaction with class postings, such as an interactive tutorial or computer-assisted instruction via modules
- A posting by the student showing the student's participation in an assignment created by the instructor.
- A posting by the student in a discussion forum showing the student's participation in an online discussion about academic matters.
- An email from the student or other documentation showing that the student has initiated contact with a faculty member to ask a question about an academic subject studied in the course.

Logging onto Canvas alone is NOT adequate to demonstrate academic attendance by the student.

Classroom Etiquette (face-to-face on-ground class)

- Electronic Devices: Cell phones and electronic devices must be turned off and put away during class unless otherwise directed by the instructor.
- Food and Drink are prohibited in all classrooms. Water bottles with lids/caps are the only exception. Additional restrictions will apply in labs. Please comply as directed by the instructor.
- Disruptive Students: Students who disrupt or interfere with a class may be sent out of the room and told to meet with the Campus Disciplinary Officer before returning to continue with coursework. Disciplinary procedures will be followed as outlined in the [General Catalog](#).
- Children in the classroom: Due to college rules and state laws, no one not enrolled in the class may attend; children are not allowed.

Online Netiquette

- What is netiquette? Netiquette is internet manners, online etiquette, and digital etiquette all rolled into one word. Basically, netiquette is a set of rules for behaving properly online.
- Students are to comply with the following rules of netiquette: (1) identify yourself, (2) include a subject line, (3) avoid sarcasm, (4) respect others' opinions and privacy, (5) acknowledge and return messages promptly, (6) copy with caution, (7) do not spam or junk mail, (8) be concise, (9) use appropriate language, (10) use appropriate emoticons (emotional icons) to help convey meaning, and (11) use appropriate intensifiers to help convey meaning [do not use ALL CAPS or multiple exclamation marks (!!!!)].

Academic Honesty

Academic honesty in the advancement of knowledge requires that all students and instructors respect the integrity of one another's work and recognize the importance of acknowledging and safeguarding intellectual property.

There are many different forms of academic dishonesty. The following kinds of honesty violations and their definitions are not meant to be exhaustive. Rather, they are intended to serve as examples of unacceptable academic conduct.

- Plagiarism is taking and presenting as one's own the writings or ideas of others, without citing the source.

You should understand the concept of plagiarism and keep it in mind when taking exams and preparing written materials. If you do not understand how to “cite a source” correctly, you must ask for help.

- Cheating is defined as fraud, deceit, or dishonesty in an academic assignment, or using or attempting to use materials, or assisting others in using materials that are prohibited or inappropriate in the context of the academic assignment in question.

Anyone caught cheating or plagiarizing will receive a zero (0) on the exam or assignment, and the instructor may report the incident to the Campus Disciplinary Officer, who may place related documentation in a file. Repeated cheating may result in an F in the course and/or disciplinary action. Please refer to the [General Catalog](#) for more information on academic dishonesty or other misconduct. Acts of cheating include but are not limited to, the following: (a) plagiarism; (b) copying or attempting to copy from others during an examination or on an assignment; (c) communicating test information with another person during an examination; (d) allowing others to do an assignment or portion of an assignment; (e) using a commercial term paper service.

Taking and using the words, work, or ideas of others and presenting any of these as your work is plagiarism. This applies to all work generated by another, whether it be oral, written, or artistic work. Plagiarism may either be deliberate or unintentional.

Other Course Information

Late submissions will not be accepted.

Financial Aid

Your Grades Matter! To continue to receive financial aid, you must meet the Satisfactory Academic Progress (SAP) requirement. Making SAP means that you are maintaining a 2.0 GPA, you have successfully completed 67% of your coursework, and you will graduate on time. If you do not maintain SAP, you may lose your financial aid. If you have questions, please contact financial aid at finaid@imperial.edu.

IVC Student Resources

IVC wants you to be successful in all aspects of your education. For help, resources, services, and an explanation of policies, visit the [IVC students' resources](#) or click the heart icon in Canvas.

Tentative Class Schedule/Calendar

Week	Topics, subtopics, and OER textbook chapters	Chapters - OER	Module
1	Orientation Module Orientation to the course and online learning Meet and greet discussion posts	Introduction, chapter 1	Orientation & Module 1
1	Chapter 1: Introduction to Plant Science: Plants and Humans relationship <ul style="list-style-type: none">• Horticulture and specialties (olericulture, pomology, post-harvest management)• Wild and domesticated plants; benefits of plants to humans• Forestry• Scientific Enquiry/Method: Science and experimentation.	Chapter 1	Module 1
1	Chapter 2: Plant Taxonomy, Improvement, and Preservation of Germplasm <ul style="list-style-type: none">• Plant taxonomy(classification).• Binomial nomenclature• Monocotyledons vs dicotyledons• Annuals, biennials, perennials• Seed Germination• Germplasm preservation	Chapter 2	Module 2
1	Chapter 3: Plant Morphology: Structure of Higher Plants <ul style="list-style-type: none">• Leaves	Chapter 3	Module 3

	<ul style="list-style-type: none"> • Stem (shoot) • Roots • Modified roots and modified stems (vegetative propagation parts) • Plant Internal Structures and Functions • Internal structure of leaves, stems, and roots (monocots & dicots). • Photosynthesis <ul style="list-style-type: none"> ◦ Process of photosynthesis ◦ Translocation of photosynthates ◦ Plant respiration ◦ Electron transport system • Assimilation • Meristem and wood growth • Timber (heartwood & sapwood) • Vascular bundle <ul style="list-style-type: none"> ◦ xylem ◦ phloem 		
2	Chapter 4: Plant Cells, Tissues, Meristem, and Woody Growth <ul style="list-style-type: none"> • Cell Organelles • Tissues (dermal, meristem, vascular) • Apical and lateral meristems 	Chapter 6 & 7	Module 4
2	Chapter 5: Plant Hormones and Ecology <ul style="list-style-type: none"> • Plant hormones; types and their functions in plant growth and development • Tropisms and stimulus response <ul style="list-style-type: none"> ◦ Phototropism, geotropism, thigmotropism, chemotropism, hydrotropism • Determinate growth and indeterminate growth • Ecology. <ul style="list-style-type: none"> ◦ Meaning of ecology and ecosystem ◦ biotic and abiotic factors, and plant biodiversity ◦ Biomes ◦ Nitrogen cycle, Carbon cycle, Phosphorus cycle, Sulfur cycle, hydrological cycle 	Chapter 4	Module 5
2	Chapter 6: Flower Morphology and Inflorescence <ul style="list-style-type: none"> • Parts of a flower • Types of flowers and functions <ul style="list-style-type: none"> ◦ The 4-whorls of a flower ◦ Reproductive parts (male and female) and non-reproductive parts (calyx and petals) of a flower ◦ Complete and incomplete flowers ◦ Perfect and imperfect flowers • Superior and inferior ovary • Types of inflorescences; spike, umbel, etc. 	Chapter 7	Module 6
3	Chapter 7: Fruits and Fruit Formation <ul style="list-style-type: none"> • Fruit anatomy • Types of fruits; Hesperidium, Pome, Berries, Drupe, Aggregate fruit 	Chapter 8	Module 7
3	Chapter 8: Seed Physiology and Crop Improvement/Breeding <ul style="list-style-type: none"> • Parts of a viable seed • Seed formation and physiology • Sexual propagation • Seed dispersal • Process of seed germination 	Chapter 9, 14	Module 8

3	Chapter 9: Mendelian Genetics and Plant Breeding (Improvement) <ul style="list-style-type: none"> • Nucleotides, DNA bases, DNA, Genes, Chromosomes • mRNA, tRNA, transcription and translation • Meiosis, Mitosis • Codons, amino acids • Mendelian Laws of Inheritance <ul style="list-style-type: none"> ◦ law of dominance ◦ law of segregation, and ◦ law of independent assortment • Punnett Square and Hybridization • GMOs and transgenics 	Chapter 13,14	Module 9
4	Chapter 10: Vegetative Propagation/Asexual Propagation <ul style="list-style-type: none"> • Cuttings, Grafting and budding, Layering, Division, Tissue culture • Natural modified organs and vegetative propagation <ul style="list-style-type: none"> ◦ Corms, bulbs, runners, stolons. 	Chapter 10	Module 10
4	Chapter 11: Plant Water Requirements <ul style="list-style-type: none"> • Water (molecule polarity, cohesion, adhesion, capillarity) • Water absorption • Evapotranspiration • Irrigation • Greenhouse gardening, hydroponic, aeroponics, and aquaponics 	Chapter 11	Module 11
4	Chapter 12: Soil Fertility and Plant Nutrition <ul style="list-style-type: none"> • Soil composition (organic matter and inorganic, air water) • Soil physical, chemical, and biological characteristics • Plant macronutrients and micronutrients • Soilless media • Soil fertility and soil amendment • Soil health • Permaculture and regenerative agriculture 	Chapter 12	Module 12
5	Chapter 13: Integrated Plant Health Management (IPHM) <ul style="list-style-type: none"> • Invasive pests and weeds and control • Plant pathology • Integrated Pest Management (IPM) 	Chapter 15	Module 13
5	Chapter 14: Plant Maturity, Postharvest Technologies and Food Safety <ul style="list-style-type: none"> • Plant Senescence • Field hygiene in vegetable crops • Field hygiene and food safety • Crop plant maturity and harvesting • Post-harvest handling, technologies and Food Safety • Vegetable crops production and food safety 		Module 14
2/4/2026	The final test will cover all the modules, and it will account for 35% of the final grade.		

Michaels, T., Clark, M., Hoover, E., Irish, L., Smith, A., and Tepe, E. (2022). *The Science of Plants: Understanding Plants and How They Grow*. University of Minnesota Press. ISBN 13: 9781946135872

This schedule is very tentative and can change without notice. You are therefore advised to follow the instructions provided at the start of each module or week. Any changes to the schedule, including tests and due dates, will be communicated.