

asic Course Information					
Semester:	Spring 2025	Instructor Name:	Octavio Ortiz		
Course Title & #:	ENGR 240	Email:	octavio.ortiz@imperial.edu		
CRN #:	21205	Webpage (optional):	Canvas		
Classroom:	2721	Office #:	2767.1		
Class Dates:	2/10 - 6/6	Office Hours:	See Schedule (attached)		
Class Days:	T/R	Office Phone #:	760-355-5706		
Class Times:	8:00 – 9:25 AM	Emergency Contact:	Silvia Murray		
Units:	3	Class Format/Modality:	In-Person		

Course Description

Circuit analysis by reduction methods, source transformations, mesh and nodal analysis. Operational amplifier model, transient analysis, alternating current circuits, impedance, power, phasor diagrams, and three-phase balanced networks. (CSU/UC)

Course Prerequisite(s) and/or Corequisite(s)

MATH 194 and PHYS 202

Student Learning Outcomes

Upon course completion, the successful student will have acquired new skills, knowledge, and or attitudes as demonstrated by being able to:

- 1. Solve problems involving resistive circuits.
- 2. Solve problems involving circuit theorems of Thevenin and Norton.
- 3. Understand the complete response of RL and RC circuits.

Course Objectives

Upon satisfactory completion of the course, students will be able to:

- 1. Solve problems involving electric circuit variables.
- 2. Solve problems involving circuit elements.
- 3. Solve problems involving series and parallel resistors.
- 4. Solve problems involving methods of analysis of resistive circuits.
- 5. Solve problems involving application of circuit theorems.
- 6. Solve problems involving the operational amplifier.
- 7. Solve problems involving energy storage elements.
- 8. Solve problems involving the complete response of RL and RC circuits.
- 9. Solve problems involving sinusoidal steady-state analysis.
- 10. Solve problems involving AC steady-state power.

Textbooks & Other Resources or Links

Fundamentals of Electric Circuits

Author: Charles Alexander, Matthew Sadiku Edition: 7th ISBN: 978-1-260-22640-9

Updated 11/2024

Copyright Year: 2021 Publisher: McGraw Hill

Course Requirements and Instructional Methods

Students will be exposed to various instructional methods. In person lectures will introduce students to fundamental electrical engineering concepts. Students will then apply what they learn in lectures to problems selected from the textbook.

Homework assignments will consist of an adequate number of applied problems selected from the textbook. Solving the homework problems will help students develop the problem solving and critical thinking skills that they will need for the chapter tests and the final exam.

The chapter tests will be focused on the content covered in a particular chapter(s). Questions will consist of multiple choice, true/false and short answer to assess conceptual and theoretical understanding. In addition, a few problems will be similar the ones on the lecture notes and the homework assignments. The final exam will be comprehensive.

Course Grading Based on Course Objectives

ASSIGNMENT	POINTS
Homework Assignments	10%
Approximately 10-12 homework assignments	
Tests	60%
Three chapter tests (20% each)	
Final Exam	30%
Comprehensive final exam 6/5/25	
Total	100%

Score	Letter Grade
≥ 90%	А
≥ 80%	В
≥ 70%	с
≥ 60%	D
< 60%	F

Academic Honesty (Artificial Intelligence -AI)

IVC values critical thinking and communication skills and considers academic integrity essential to learning. Using AI tools as a replacement for your own thinking, writing, or quantitative reasoning goes against both our mission and academic honesty policy and will be considered academic dishonesty, or plagiarism unless you have been instructed to do so by your instructor. In case of any uncertainty regarding the ethical use of AI tools, students are encouraged to reach out to their instructors for clarification.

Accessibility Statement

Imperial Valley College is committed to providing an accessible learning experience for all students, regardless of course modality. Every effort has been made to ensure that this course complies with all state and federal accessibility regulations, including Section 508 of the Rehabilitation Act, the Americans with Disabilities Act (ADA), and Title 5 of the

Updated 11/2024

California Code of Regulations. However, if you encounter any content that is not accessible, please contact your instructor or the area dean for assistance. If you have specific accommodations through *DSPS*, contact them for additional assistance.

We are here to support you and ensure that you have equal access to all course materials.

Course Policies

Attendance:

Students are expected to attend every class meeting. Lectures will preview homework assignments.

- Although attendance is not explicitly factored into your grade, failing to complete homework assignments and assessments due to absences will negatively impact your grade.
- Students with excessive absences will be dropped from the course as outlined in AP 5075.

Late Submissions:

Homework assignments are to be completed and submitted by the due date stated on Canvas. Late homework assignments will be accepted and penalized as follows:

- 70% maximum score if submitted within 24 hours of due date
- 50% maximum score if submitted 24 hours past the due date

Make-up Assignments:

There are no make-up assignments.

- Homework assignments that are more than a week past due will receive a score of 0 and cannot be made up.
- Tests and final exam cannot be made up, however, if the material is presented again in future assessments, then the failed assessment will be reevaluated.

Drop Policy

The instructor reserves the right to drop students who fail to attend the first-class session or fail to complete the first assignment by the assigned due date.

Financial Aid

Your Grades Matter! In order to continue to receive financial aid, you must meet the Satisfactory Academic Progress (SAP) requirement. Makings SAP means that you are maintaining a 2.0 GPA, you have successfully completed 67% of your coursework, and you will graduate on time. If you do not maintain SAP, you may lose your financial aid. If you have questions, please contact financial aid at finaid@imperial.edu.

IVC Student Resources

IVC wants you to be successful in all aspects of your education. For help, resources, services, and an explanation of policies, visit <u>http://www.imperial.edu/studentresources</u> or click the heart icon in Canvas.

Anticipated Class Schedule/Calendar

Week	Date	Торіс	Assignment
Week 1	2/11	 Syllabus <u>Chapter 1 – Basic Concepts</u> Charge and Current 	
		 Voltage 	

Week	Date	Торіс	Assignment
		 Power & Energy 	
	2/13	<u>Chapter 1 – Basic Concepts</u>	
		 Circuit Elements 	
		 Applications 	
Week 2	2/18	<u>Chapter 2 – Basic Laws</u>	
		 Ohm's Law 	
		 Nodes, Branches, and Loops 	
		 Kirchhoff's Laws 	
	2/20	<u>Chapter 2 – Basic Laws</u>	
		 Series Resistors & Voltage Division 	
		 Parallel Circuits & Current Division 	
Week 3	2/25	• Chapter 2 – Basic Laws	
		 Wye-Delta Transformations 	
		• Applications	
	2/27	Test: Chapters 1-2	
Week 4	3/4	Chapter 3 – Methods of Analysis	
		 Nodal Analysis 	
		 Nodal Analysis and Voltage Sources 	
	3/6	Chapter 3 – Methods of Analysis	
	-,-	 Mesh Analysis 	
		 Mesh Analysis with Current Sources 	
Week 5	3/11	Chapter 3 – Methods of Analysis	
in een o	0,11	 Nodal and Mesh Analyses by Inspection 	
		 Nodal Versus Mesh Analysis 	
	3/13	Chapter 3 – Methods of Analysis	
	3,13	 Circuit Analysis with PSpice 	
		 Applications 	
Week 6	3/18	Review Chapters 3	
	3/20	Test: Chapter 3	
Week 7	3/25	Chapter 4: Circuit Theorems	
	-, -	 Linearity Property 	
		 Superposition 	
		 Source Transformation 	
	3/27	Chapter 4: Circuit Theorems	
	-,	• Thevenin's Theorem	
		 Norton's Theorem 	
		 Maximum Power Transfer 	
		 Applications 	
Week 8	4/1	Chapter 6 – Capacitors and Inductors	
WUCK O	-7/ -	 Chapter 6 – Capacitors and inductors Capacitors 	
		 Series and Parallel Capacitors 	
	4/3	Chapter 6 – Capacitors and Inductors	
	כ וד		
		 Series and Parallel Inductors 	

Week	Date	Торіс	Assignment
		 Applications 	
Week 9	4/8	<u>Chapter 7 – First-Order Circuits</u>	
		 The Source-Free 	
		 The Source-Free RL Circuit 	
	4/10	<u>Chapter 7 – First-Order Circuits</u>	
		 Singularity Functions 	
		 Step Response of an RC Circuit 	
		 Step Response of an RL Circuit 	
Week 10	4/15	<u>Chapter 9 – Sinusoids and Phasors</u>	
		 Sinusoids 	
		o Phasors	
	4/17	<u>Chapter 9 – Sinusoids and Phasors</u>	
		 Phasor Relationships for Circuit Elements 	
		 Impedance & Admittance 	
		 Kirchhoff's Law and Frequency Domain 	
	-	Spring Break	
Week 11	5/1	Review Chapters 4, 6, 7, 9	
	5/3	Test: Chapters 4, 6, 7 & 9	
Week 12	5/8	<u>Chapter 10 – Sinusoidal Steady-State Analysis</u>	
		 Nodal Analysis 	
	5/10	<u>Chapter 10 – Sinusoidal Steady-State Analysis</u>	
		 Mesh Analysis 	
Week 13	5/15	<u>Chapter 10 – Sinusoidal Steady-State Analysis</u>	
		 Superposition Theorem 	
		 Source Transformation 	
	5/17	<u>Chapter 10 – Sinusoidal Steady-State Analysis</u>	
		 Thevenin and Norton Equivalent Circuits 	
Week 14	5/22	<u>Chapter 5 – Operational Amplifiers</u>	
		 Operational Amplifiers 	
		 Ideal Op Amp 	
	5/24	<u>Chapter 5 – Operational Amplifiers</u>	
		 Inverting Amplifier 	
		 Noninverting Amplifier 	
		 Summing Amplifier 	
Week 15	5/29	<u>Chapter 5 – Operational Amplifiers</u>	
		 Difference Amplifier 	
		 Cascaded Op Amp Circuits 	
	5/31	<u>Chapter 5 – Operational Amplifiers</u>	
		 Applications 	
Week 16	6/3	Review Chapters 1-7, 9, 10	
	6/5	Comprehensive Final Exam	

Subject to change without prior notice

OCTAVIO ORTIZ IVC Instructor's Schedule of Classes and Office Hours Science, Math and Engineering Department

		Spring 2025											
		7:00 AM	8:00 AM	9:00	AM	10:00 AM	11:00 AM	12:00	PM	1:00 PM 2:0	DO PM	3:00 PM	4:00 PM
	COURSE		ĺ	Office	Hour		ENGR 100			CS 221 - Hybrid			
м	CRN	l	l	Online		10:15 - 12:45 PM				LEC/LAB 20549		l	I
	LEC/LAB			9:00 - 10						1:00 - 2:25 PM			
	FACULTY			5.00-10			RM #4300			RM #4300			
	COURSE	I	ENGR	240	0 ENGR 21		2 Office Hour			CS 231			
Т	CRN		LEC 21	205	LEC	C 20607	20607 Office Hour In-Person			LEC/LAB			
1.	LEC/LAB		8:00 - 9:2	25 AM	9:40 -	11:05 AM 11:15 - 12:15 PM				1:00 - 3:30 PM			
	FACULTY	i	RM #2	721 RI		VI #212	11.10 - 12.10 - 14	<u>"</u>		RM #803			i
	COURSE			Office Hour		ENGR 100				CS 221 - Hybrid			
w	CRN			In-Pe		LEC/LAB 20981				LEC/LAB 20549			
1	LEC/LAB	i		9:00 - 10		10):15 - 12:45 PM			1:00 - 2:25 PM			
	FACULTY			5.00 - 10			RM #4300			RM #4300			
	COURSE		ENGR	240	EN	GR 212	Office Hour			CS 23	1		
R	CRN		LEC 21	205	LEC	C 20607	Online - Zoom	i		LEC/LAB	20550		
	LEC/LAB	ļ	8:00 - 9:2	25 AM	9:40 -	11:05 AM 11:15 - 12:15 PM		<u> </u>		1:00 - 3:30 PM			ļ
	FACULTY		RM #2	721	R	VI #212	11110 1110 111			RM #8	03		
	COURSE												
F	CRN	L_i	<u> i </u>	ļi		i	i	i		i	<u>i</u>	i	i
1.	LEC/LAB									I			
	FACULTY												

Course No	Sections	Lec Hrs	Lab Hrs
ENGR 100	1	2	3
ENGR 212	1	3	0
ENGR 240	1	3	0
CS 221	1	2	3
CS 231	1	2	3
Total	•	12	9

Instructor's Name	Octavio Ortiz
Phone	760-355-5706
Office No.	2767.1
Email	octavio.ortiz@imperial.edu