

Basic Course Information			
Semester:	Sprint 2023	Instructor Name:	Octavio Ortiz
Course Title & #:	ENGR 212	Email:	octavio.ortiz@imperial.edu
CRN #:	20607	Webpage (optional):	Canvas
Classroom:	2722	Office #:	2767.1
Class Dates:	2/13 - 6/9	Office Hours:	Faculty Schedule
Class Days:	T/TR	Office Phone #:	760-355-5706
Class Times:	2:40 – 4:05 PM	Emergency Contact:	Silvia Murray
Units:	3	Class Format:	Face-to-Face (On Ground)

Course Description

Kinetics of a particle; central force motion; systems of particles; work and energy; impulse and momentum; moments and products of inertia; Euler's equations of motion; vibration and time response; engineering applications. (CSU, UC)

Course Prerequisite(s) and/or Corequisite(s)

ENGR 210 with a grade of "C" or better, and credit or concurrent enrollment in MATH 194.

Student Learning Outcomes

Upon course completion, the successful student will have acquired new skills, knowledge, and or attitudes as demonstrated by being able to:

- 1. Solve problems involving kinetics of particles.
- 2. Solve problems involving kinematics of rigid bodies.
- 3. Solve problems involving plane motion of rigid bodies.
- 4. Demonstrate problem solving strategies by identifying an appropriate method to solve a given problem, correctly set up the problem, perform the appropriate analysis and computation, and share their interpretation of the conclusion or the outcome, using correct grammar or in an oral presentation.

Course Objectives

Upon satisfactory completion of the course, students will be able to:

- 1. Derive and apply the relationships between position, velocity, and acceleration of a particle in rectilinear and curvilinear motion.
- 2. Derive relations defining the velocity and acceleration of any particle on a rigid body for translation, rotation and general plane motion.
- 3. Apply the method of work and energy to engineering problems modeled as a single particle, a system of particles, or a rigid body in plane motion.
- 4. Apply the method of impulse and momentum to engineering problems modeled as a single particle, as system of particles, or a rigid body in plane motion.
- 5. Select the method of analysis that is best suited for the solution to a given problem. (Newton's Law, Work and Energy, Impulse and Momentum, or a combination of these methods).
- 6. Describe and analyze the plane motion of a particle relative to a rotating frame. Determine the Coriolis acceleration in plane motion.
- 7. Apply the principle of impulse and momentum to problems of direct and oblique central impact, as well as eccentric impact.
- 8. To effective communicate legible engineering solutions to be understood by engineers both in and out of their specific disciplines.

Textbooks & Other Resources or Links

Engineering Mechanics: Dynamics (w/out Mastering Access)

Author: Hibbeler Edition: 14th

ISBN: 978-0133915389 Copyright Year: 2016

Publisher: Pearson Prentice Hall

Course Requirements and Instructional Methods

Students will be exposed to various instructional methods. In person lectures will introduce students to fundamental engineering concepts in Dynamics. Students will then apply what they learn in lectures to problems selected from the textbook.

Homework assignments will consist of an adequate number of applied problems selected from the textbook. Solving the homework problems will help students develop the problem solving and critical thinking skills that they will need for the chapter tests and the final exam.

The chapter tests will be focused on the content covered in a particular chapter(s). Questions will consists of multiple choice, true/false and short answer to assess conceptual and theoretical understanding. In addition, a few problems will be similar the ones on the lecture notes and the homework assignments. The final exam will be comprehensive.

Course Grading Based on Course Objectives

ASSIGNMENT	POINTS
Homework Assignments	10%
Approximately 10-12 homework assignments	
Tests	60%
Four chapter tests (15% each)	
Final Exam	30%
Comprehensive final exam 6/8/23	
Total	100%

Score	Letter Grade
≥ 90%	А
≥ 80%	В
≥ 70%	С
≥ 60%	D
< 60%	F

Course Policies

Attendance:

Students are expected to attend every class meeting. Lectures will preview homework assignments.

- Although attendance is not explicitly factored into your grade, failing to complete homework assignments and assessments due to absences will negatively impact your grade.
- Students with excessive absences will be dropped from the course as outlined in AP 5075.

Late Submissions:

Homework assignments are to be completed and submitted by the due date stated on Canvas. Late homework assignments will be accepted and penalized as follows:

- 70% maximum score if submitted within 24 hours of due date
- 50% maximum score if submitted 24 hours past the due date

Make-up Assignments:

There are no make-up assignments.

- Homework assignments that are more than a week past due will receive a score of 0 and cannot be made up.
- Tests and final exam cannot be made up, however, if the material is presented again in future assessments, then the failed assessment will be reevaluated.

Drop Policy

The instructor reserves the right to drop students who fail to attend the first-class session or fail to complete the first assignment by the assigned due date.

IVC Student Resources

IVC wants you to be successful in all aspects of your education. For help, resources, services, and an explanation of policies, visit http://www.imperial.edu/studentresources or click the heart icon in Canvas.

Course Calendar

The semester calendar is meant to provide an overview of the topics that will be covered throughout the semester. Every effort will be made to adhere to the calendar; however, changes might be necessary.

Week	Date	Topic	Assignment
Week 1	2/14	 Syllabus Chapter 12 – Kinematics of a Particle Rectilinear kinematics: Continuous & Erratic Motion Motion of a Projectile 	
	2/16	 Chapter 12 – Kinematics of a Particle Curvilinear Motion: Normal and Tangential Components 	
Week 2	ek 2 2/21 • Chapter 13 – Kinetics of a Particle: Force & Acceleration • Newton's Second Law of Motion • $\sum F = ma$ • Equation of Motion for a System of Particles		
	2/23	 Chapter 13 – Kinetics of a Particle: Force & Acceleration Rectangular Coordinates Equations of Motion: Normal and Tangential Coordinates 	
Week 3	2/28	Review Chapters 12-13	
	3/2	Test: Chapters 12-13	
Week 4	3/7	 Chapter 14 – Kinetics of a Particle: Work and Energy The Work of a Force Principle of Work and Energy Principle of Work and Energy for a System of Particles 	
	3/9	 Chapter 14 – Kinetics of a Particle: Work and Energy Power and Efficiency Conservative Forces and Potential Energy Conservation of Energy 	
Week 5	3/14	 Chapter 15 – Kinetics of a Particle: Impulse and Momentum Principle of Linear Impulse and Momentum Principle of Linear Impulse and Momentum for a System of Particles Conservation of Linear Momentum for a System of Particles 	
	3/16	 Chapter 15 – Kinetics of a Particle: Impulse and Momentum Angular Momentum Relation Between Moment of a Force and Angular Momentum Principle of Angular Impulse and Momentum Steady Flow of a Fluid Stream 	
Week 6	6 3/21 • Review Chapters 14-15		
	3/23	Test: Chapter 14-15	
Week 7	3/28	Chapter 16: Planar Kinematics of a Rigid Body	

Week	Date	Topic	Assignment
		 Planar Rigid-Body Motion 	
		Translation	
		 Rotation about a Fixed Axis 	
		 Absolute Motion Analysis 	
	3/30	Chapter 16: Planar Kinematics of a Rigid Body	
		 Relative-Motion Analysis: Velocity 	
		 Instantaneous Center of Zero Velocity 	
		 Relative-Motion Analysis: Acceleration 	
		 Relative-Motion Analysis using Rotating Axes 	
Week 8	4/4	• Chapter 17 – Planar Kinematics of a Rigid Body: Force and	
		<u>Acceleration</u>	
		 Mass Moment of Inertia 	
		 Planar Kinetic Equations of Motion 	
		 Equations of Motion: Translation 	
	4/6	 Chapter 17 – Planar Kinematics of a Rigid Body: Force and 	
		<u>Acceleration</u>	
		 Equations of Motion: Rotation about a Fixed Axis 	
		 Equations of Motion: General Plane Motion 	
Week 9	4/18	Review Chapters 16 – 17	
	4/20	Test: Chapters 16 & 17	
Week 10	4/25	Chapter 18 – Planar Kinetics of a Rigid Body: Work and	
		Energy	
		 Kinetic Energy 	
		 The Work of a Force 	
		 The Work of a Couple Moment 	
	4/27	Chapter 18 – Planar Kinetics of a Rigid Body: Work and	
		Energy	
		 Principle of Work and Energy 	
		 Conservation of Energy 	
Week 11	5/2	• Chapter 19 – Planar Kinetics of a Rigid Body: Impulse and	
		<u>Momentum</u>	
		 Linear and Angular Momentum 	
		 Principle of Impulse and Momentum 	
	5/4	 Chapter 19 – Planar Kinetics of a Rigid Body: Impulse and 	
		<u>Momentum</u>	
		 Conservation of Momentum 	
Week 12	5/9	Review Chapters 18 - 19	
	5/11	Test: Chapters 18 & 19	
Week 13	5/16	Chapter 20 – Three-Dimensional Kinematics of a Rigid Body	
		 Rotation about a fixed point 	
		 General Motion 	
	5/18	Chapter 21 – Three-Dimensional Kinetics of a Rigid Body	
		 Moments & Products of Inertia 	
		 Angular Momentum 	

Week	Date	Торіс	Assignment
Week 14	5/23	 Chapter 21 – Three-Dimensional Kinetics of a Rigid Body Kinetic Energy 	
	5/25	 Chapter 22 – Vibrations Undamped Free Vibrations Energy Methods 	
Week 15	5/30	 <u>Chapter 22 – Vibrations</u> Undamped Forced Vibrations 	
	6/1	 Chapter 22 – Vibrations Energy Methods Undamped Forced Vibrations 	
Week 16	6/6	Review Chapters 12-22	
	6/8	Comprehensive Final Exam	

^{***}Subject to change without prior notice***