

1

Basic Course Information

Semester: Sprint 2022 Instructor Name: Octavio Ortiz

Course Title & #: CS 231 Email: octavio.ortiz@imperial.edu

CRN #: 20550 Webpage (optional): Canvas

Classroom: 2609 Office #: 2767.1

Class Dates: 2/14/22 – 6/10/22 Office Hours:

M: 9:45 – 10:15 AM
T: 5:30 – 6 PM
T/TH: 9 – 10 AM
TH: 4:40 – 5:10 PM (IHS)

Class Days: Tuesday/Thursday Office Phone #: 760-355-5706

Class Times: 10:15 – 12:45 PM Emergency Contact: Silvia Murray: 760-355-6201

Units: 3 Class Format: Face-to-Face

Course Description

Further training in program design and development. Object-oriented programming to include inheritance,

polymorphism, and generic code. Extensive programming in Java. Introduction to data structures: arrays, stacks, queues,

linked lists, trees, hash tables, dictionaries, sets and graphs. Standard methods used for sorting, searching and analyzing

the relative efficiency of algorithms (Big-O notation) (CSU, UC)

Course Prerequisite(s) and/or Corequisite(s)

CS 221 with a grade of “C” or better.

Student Learning Outcomes

Upon course completion, the successful student will have acquired new skills, knowledge, and or attitudes as
demonstrated by being able to:

1. Correctly determine the relative runtimes of different sort algorithms on arrays of different sizes.
2. Correctly implement an abstract data type (ADT) as a Java class.
3. Correctly use recursion to solve a problem with a data structure.

Course Objectives

Upon satisfactory completion of the course, students will be able to:

1. Analyze unstructured problems and design computer solutions
2. Apply or create appropriate data structures to solve a particular problem.
3. Apply or a create suitable algorithm to solve a particular problem.
4. Analyze the relative efficiency of a particular algorithm.
5. Implement and test the efficiency of a particular algorithm.
6. Design and implement a stack Abstract Data Type (ADT) and queue ADT.
7. Define and implement a binary tree ADT.
8. Perform a runtime analysis of sorting algorithms.
9. Design and code a complete program of 500 lines or more.

2

Textbooks & Other Resources or Links

Introduction to JAVA – Programming and Data Structures
Author: Y. Daniel Liang
Edition: 11th
ISBN: 978-0-13-467094-2
Copyright Year: 2018
Publisher: Pearson Prentice Hall

Course Requirements and Instructional Methods

Students will be exposed to various instructional methods. Lectures, both in person and through pre-recorded tutorial
videos, will introduce students to fundamental programming concepts. Students will then apply what they learn in
lectures to their own programming assignments and applications. Guidance and modeling will be provided during the
face-to-face component of the course.

Programming assignments will be relatively short and will assess a student’s mastery of a particular programming skill,
as well as a student’s ability to problem solve. Programming applications, or projects, will be more intricate. To develop
an application, students will rely on the various programming and problem-solving skills they have developed up to that
point.

There will be short quizzes where students will read code and answer multiple choice, true-false, and free-response
questions pertaining to the code segments. A comprehensive semester final exam will assess students’ ability to read,
debug and rationalize code segments that range in complexity.

Course Grading Based on Course Objectives

ASSIGNMENT POINTS Score Letter Grade

Collaborative Notes 30%
≥ 90% A

 Approximately 2-3 per week

Programming Assignments 40%
≥ 80% B

 Approximately 10-12 PA’s in semester

Quizzes/Discussions 10%
≥ 70% C

 10 or fewer quizzes in semester

Projects/Final Exam 20%
≥ 60% D

 Midterm project & comprehensive final

Total 100%
< 60% F

3

Course Policies

Attendance:

Students are expected to attend every class meeting. Lectures will preview programming assignments,
programming applications and future assessments.

▪ Although attendance is not explicitly factored into your grade, failing to complete programming
assignments and assessments due to absences will negatively impact your grade.

Late Submissions:

Programming assignments are to be completed and submitted by the due date stated on Canvas. Late
programming assignments will be accepted and penalized as follows:

▪ 90% maximum score if submitted within 24 hours past due date
▪ 80% maximum score if submitted within 48 hours past due date
▪ 70% maximum score if submitted within 72 hours past due date
▪ 50% maximum score if more than three days and less than a week past due date
▪ No credit will be given to assignments that are one week or more past due

Programming applications/projects, quizzes and the final exam will NOT be accepted late.

Make-up Assignments:

There are no make-up assignments.
▪ Programming assignments that are more than a week past due will receive a score of 0 and cannot be

made up.
▪ Programming applications/projects and quizzes cannot be made up, however, if the material is

presented again in future applications or quizzes, then the failed assessment will be reevaluated.

Drop Policy

The instructor reserves the right to drop students who fail to attend the first-class session or fail to
complete the first assignment by the assigned due date.

Other Course Information

Resources:

https://www.w3schools.com – Learn Programming

https://docs.oracle.com/en/java/index.html - Java Documentation

IVC Student Resources

IVC wants you to be successful in all aspects of your education. For help, resources, services, and an explanation of
policies, visit http://www.imperial.edu/studentresources or click the heart icon in Canvas.

https://www.w3schools.com/
https://docs.oracle.com/en/java/index.html
http://www.imperial.edu/studentresources

4

Course Calendar

The semester calendar is meant to provide an overview of the topics that will be covered throughout the semester.
Every effort will be made to adhere to the calendar; however, changes might be necessary.

Week Date Topic Assignment

Week 1

2/15 • Syllabus & Course Policies
o Modules, collaborative notes, programming

assignments, etc…

2/17 • Inheritance
o Superclass and subclass, extending classes, keyword

“super”

Week 2

2/22 • Inheritance
o Polymorphism, overriding methods, instanceof and

casting objects

2/24 • Exception Handling
o Exception types, keyword “throws”

Week 3

3/1 • Abstract classes & Interfaces
o Abstract classes, implementing an interface

3/3 • Abstract classes & Interfaces
o Overriding abstract methods, comparable interface

Week 4

3/8 • Recursion
o Recursive methods, recursion vs iteration

3/10 • Recursion
o Recursion & stack/heap space

Week 5

3/15 • Generics
o Benefits of generics, syntax for generic methods, syntax

for generic classes & interfaces

3/17 • Generics
o Wildcard generic types

Week 6

3/22 • Generics
o Implementing generic classes

3/24 • Lists, Stacks, Queues & Priority Queues
o Collections

Week 7

3/29 • Lists, Stacks, Queues & Priority Queues
o Iterators, for-each method, Lists

3/31 • Lists, Stacks, Queues & Priority Queues
o Lists

Week 8

4/5
Midterm Project

4/7

Week 9

4/12 • Lists, Stacks, Queues & Priority Queues
o Comparator Interface, static methods for lists and

collections

4/14 • Lists, Stacks, Queues & Priority Queues
o Queues and priority queues

5

Week Date Topic Assignment

Spring Break

Week 10

4/26 • Sets & Maps
o Sets, performance of sets and lists

4/28 • Sets & Maps
o Maps

Week 11

5/3 • Developing Efficient Algorithms
o Algorithm efficiency and Big-O notation

5/5 • Developing Efficient Algorithms
o Algorithm and time complexity, determining Big-O

Week 12

5/10 • Sorting
o Insertion sort, merge sort

5/12 • Sorting
o Quick sort, bubble sort

Week 13

5/17 • Implementing Lists, Stacks, Queues & Priority
Queues
o Array Lists, Linked Lists

5/19 • Implementing Lists, Stacks, Queues & Priority
Queues
o Stacks & Queues, Priority Queues

Week 14

5/24 • Binary Search Trees
o Binary search trees, deleting elements from a BST

5/26 • Binary Search Trees
o Tree visualization and MVC, Iterators

Week 15

5/31 • Hashing
o Hash functions and hash codes, handling collisions

6/2 • Hashing
o Load factor and rehashing

Week 16

6/7 • Review
o Review data structures, algorithms and efficiency

6/9 • Comprehensive Final Exam

Subject to change without prior notice

